Description
Neurons communicate via a traveling wave of electrical excitation that propagates down an axon at speeds in the range of 10–100 m/s. This electrical wave is triggered and regulated by opening and closing of voltage-gated ion channels. These channels have been traditionally believed to be sensitive to the local electrochemical environment. A growing number of experiments now conclusively show that lipid-associated mechanical stimuli can control the channel response. We develop a quantitative model to elucidate the mechanosensitivity exhibited by these channels. With the help of a single model, we are able able to consolidate the findings of the various experimental studies that have investigated the effect of different mechanical stimuli.
Recommended Citation
Agrawal, A., Chaurasia, V., & Mandadapu, K. (2014). Mechanosensitive response of voltage-gated ion channels. In A. Bajaj, P. Zavattieri, M. Koslowski, & T. Siegmund (Eds.). Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, October 1-3, 2014 , West Lafayette: Purdue University Libraries Scholarly Publishing Services, 2014. https://docs.lib.purdue.edu/ses2014/bio/mechano/18
Mechanosensitive response of voltage-gated ion channels
Neurons communicate via a traveling wave of electrical excitation that propagates down an axon at speeds in the range of 10–100 m/s. This electrical wave is triggered and regulated by opening and closing of voltage-gated ion channels. These channels have been traditionally believed to be sensitive to the local electrochemical environment. A growing number of experiments now conclusively show that lipid-associated mechanical stimuli can control the channel response. We develop a quantitative model to elucidate the mechanosensitivity exhibited by these channels. With the help of a single model, we are able able to consolidate the findings of the various experimental studies that have investigated the effect of different mechanical stimuli.