Date of Award

Fall 2014

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering

First Advisor

Jan P. Allebach

Committee Chair

Jan P. Allebach

Committee Member 1

Mary L. Comer

Committee Member 2

Edward J. Delp

Abstract

Accurate estimation of toner usage is an area of on-going importance for laser, electrophotographic (EP) printers. In Part 1, we propose a new two-stage approach in which we first predict on a pixel-by-pixel basis, the absorptance from printed and scanned pages. We then form a weighted sum of these pixel values to predict overall toner usage on the printed page. The weights are chosen by least-squares regression to toner usage measured with a set of printed test pages. Our two-stage predictor significantly outperforms existing methods that are based on a simple pixel counting strategy in terms of both accuracy and robustness of the predictions.^ In Part 2, we describe a raster-input-based object map generation algorithm (OMGA) for laser, electrophotographic (EP) printers. The object map is utilized in the object-oriented halftoning approach, where different halftone screens and color maps are applied to different types of objects on the page in order to improve the overall printing quality. The OMGA generates object map from the raster input directly. It solves problems such as the object map obtained from the page description language (PDL) is incorrect, and an initial object map is unavailable from the processing pipeline. A new imaging pipeline for the laser EP printer incorporating both the OMGA and the object-oriented halftoning approach is proposed. The OMGA is a segmentation-based classification approach. It first detects objects according to the edge information, and then classifies the objects by analyzing the feature values extracted from the contour and the interior of each object. The OMGA is designed to be hardware-friendly, and can be implemented within two passes through the input document.

Share

COinS