Date of Award

Fall 2014

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Basic Medical Sciences

First Advisor

James F. Leary

Committee Chair

James F. Leary

Committee Member 1

Sophie A. Lelievre

Committee Member 2

Sherry L. Voytik-Harbin

Committee Member 3

Steven T. Wereley

Abstract

Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. While these procedures can be effective, it would be advantageous to design a biologically active stent, modified with magnetic stent coatings, allowing cells to be manipulated to heal the arterial lining. Further, velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, but the shear force mechanisms effecting wound closure is elusive. Due to these factors, there is a definite need to cultivate a new stent device that will aid in healing an aneurysm insitu. To this end, a static bioactive stent device was synthesized. Additionally, to study aneurysm pathogenesis, a lab-on-a-chip device (a dynamic stent device) is the key to discovering the underlying mechanisms of these lesions. A first step to the reality of a true bioactive stent involves the study of cells that can be tested against the biomaterials that constitute the stent itself. The second step is to test particles/cells in a microfluidic environment. Therefore, biocompatability data was collected against PDMS, bacterial nanocellulose (BNC), and magnetic bacterial nanocellulose (MBNC). Preliminary static bioactive stents were synthesized whereby BNC was grown to cover standard nitinol stents. In an offshoot of the original research, a two-dimensional microfluidic model, the Aneurysm-on-a-ChipTM (AOC), was the logical answer to study particle flow within an aneurysm "sac" - this was the dynamic bioactive stent device. The AOC apparatus can track particles/cells when it is coupled to a particle image velocimetry software (PIV) package. The AOC fluid flow was visualized using standard microscopy techniques with commercial microparticles/cells. Movies were taken during fluid flow experiments and PIV was utilized to monitor

Share

COinS