Date of Award

January 2015

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Aeronautics and Astronautics

First Advisor

Michael D Sangid

Committee Member 1

Weinong W Chen

Committee Member 2

Michael G Glavicic

Committee Member 3

David F Bahr

Abstract

Fatigue crack initiation in polycrystalline materials can be attributed to various mechanistic and microstructural features acting in concert like the elastic stress anisotropy, plastic strain accumulation, resolved shear stress, normal stress, slip-system length, and grain boundary character. In nickel-base superalloys, fatigue cracks tend to initiate near twin boundaries. The factors causing fatigue crack initiation depend on the material’s microstructure, the variability of which results in the scatter observed in the fatigue life. In this work, a robust microstructure based fatigue framework is developed, which takes into account i) the statistical variability of the material's microstructure, ii) the continuum scale complex heterogeneous 3D stress and strain states within the microstructure, and iii) the atomistic mechanisms such as slip-grain boundary (GB) interactions, extrusion formations, and shearing of the matrix and precipitates due to slip. The quantitative information from crystal plasticity simulations and molecular dynamics is applied to define the energy of persistent slip bands (PSB). The energy of a critical PSB and its associated stability with respect to the dislocation motion is used as the failure criterion for crack initiation. This unified framework helps us gain insights on why fatigue cracks tend to initiate at twin boundaries. In addition to that, the computational framework links variability in material’s microstructure to the scatter observed in fatigue life.

Share

COinS