Date of Award

January 2015

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mechanical Engineering

First Advisor

Shirley Dyke

Committee Member 1

Ayhan Irfanoglu

Committee Member 2

Bin Yao

Committee Member 3

Douglas Adams

Abstract

Structural control systems play a critical role in protecting civil infrastructure from natural hazards such as earthquakes and extreme winds. Utilizing wireless sensors for sensing, communication and control, wireless structural control systems provide an attractive alternative for structural vibration mitigation. Although wireless control systems have advantages of flexible installation, rapid deployment and low maintenance cost, there are unique challenges associated with them, such as wireless network induced time delay and potential data loss. These challenges need to be considered jointly from both the network (cyber) and control (physical) perspectives. This research aims to develop a framework facilitating cyber-physical codesign of wireless control system. The challenges of wireless structural control are addressed through: (1) a numerical simulation tool to realistically model the complexities of wireless structural control systems, (2) a codesign approach for designing wireless control system, (3) a sensor platform to experimentally evaluate wireless control performance, (4) an estimation method to compensate for the data loss and sensor failure, and (5) a framework for fault tolerance study of wireless control system withreal-time hybrid simulation. The results of this work not only provide codesign tools to evaluate and validate wireless control design, but also the codesign strategies to implement on real-world structures for wireless structural control.

Share

COinS