DOI

10.1038/s41541-024-00943-8

Date of this Version

8-17-2024

Abstract

A critical aspect of cancer vaccine development is the formulation with effective adjuvants. This study evaluated whether combining a cationic plant-derived nanoparticle adjuvant (Nano-11) with the clinically tested STING agonist ADU-S100 (MIW815) could stimulate anticancer immunity by intradermal vaccination. Nano-11 combined with ADU-S100 (NanoST) synergistically activated antigen-presenting cells, facilitating protein antigen cross-presentation in vitro and in vivo. Intradermal vaccination using ovalbumin (OVA) as a tumor antigen and combined with Nano-11 or NanoST prevented the development of murine B16-OVA melanoma and E.G7-OVA lymphoma tumors. The antitumor immunity was abolished by CD8+ T cell depletion but not by CD4+ T cell depletion. Therapeutic vaccination with NanoST increased mouse survival by inhibiting B16-OVA tumor growth, and this effect was further enhanced by PD-1 checkpoint blockade. Our study provides a strong rationale for developing NanoST as an adjuvant for intradermal vaccination and next-generation preventative and therapeutic cancer vaccines by STING-targeted activation.

Comments

This is the publisher PDF of Hernandez-Franco, J.F., Jan, I.M., Elzey, B.D. et al. Intradermal vaccination with a phytoglycogen nanoparticle and STING agonist induces cytotoxic T lymphocyte-mediated antitumor immunity. npj Vaccines 9, 149 (2024). This article is distributed under a CC-BY license, and is available at DOI: 10.1038/s41541-024-00943-8.

Share

COinS