•  
  •  
 

Abstract

While in microgravity, astronauts are preoccupied with physical restraint, which takes attention away from the maintenance task or scientific experiment at hand. This may directly lead to safety concerns and increased time for extravehicular activity, as well as potentially inhibit or corrupt data collection. A primary concern is the time it takes to manipulate the current restraint system. The portable foot restraint currently in use by NASA employs a series of pins in order to engage the system or release in an emergency. This requires considerable time for the user to detach, and there is an increased risk of entanglement. If restraint operating time could be reduced by 50%, the astronaut’s assigned experiment time could be increased an average of 100 minutes per mission. Another problem identified by NASA included the inability of the current system to release the user upon failure. Research and design was conducted following the Six-Sigma DMEDI project architecture, and a new form of restraint to replace the existing system was proposed. The research team first studied the customer requirements and relevant standards set by NASA, and with this information they began drafting designs for a solution. This project utilized electromagnetism to restrain a user in microgravity. The proposed system was capable of being manipulated quickly, failing in a manner that released the user, and being electronically controlled. This active electronic control was a new concept in restraint systems, as it enabled an astronaut to effectively “walk” along a surface while remaining restrained to it. With the design prototype and a limited budget, a rudimentary test assembly was built by the team, and most of NASA’s specifications were met. With recommendations from NASA, the research team concluded by developing potential material and design solutions that can be explored in the future by Purdue University or other parties.

Share

COinS