Keywords

phosphor thermometry, fluid flow, zinc oxide, laser diagnostics

Presentation Type

Poster

Research Abstract

Phosphor thermometry is a non-intrusive thermometry technique that allows for spatially and temporally resolved surface temperature measurements. The thermographic method has been employed in a number of applications that include combustion, sprays, and gas flows. In the current work, we investigate the implementation of thermographic phosphors in liquid flows, which is of interest in a wide range of applications in heat transfer, fluid mechanics, and thermal systems. Zinc oxide doped with Zinc (ZnO:Zn) was the phosphor employed for experimentation due to its high emission intensity and insolubility. In order to explore this application, the phosphor powder was uniformly dispersed in water using a magnetic stirring rod. The phosphor was excited by the third harmonic 355 nm output of a Nd:YAG laser, and the luminescence was examined using a fiber-coupled spectrometer. Analysis of the spectral data showed a significant redshift as the temperature approached boiling point. Further characterization of effects of temperature and experimental parameters such as ZnO:Zn concentration on the luminescence signal was performed.

Session Track

Energy

Share

COinS
 
Aug 4th, 12:00 AM

Fluid Flow Thermometry Using Thermographic Phosphors

Phosphor thermometry is a non-intrusive thermometry technique that allows for spatially and temporally resolved surface temperature measurements. The thermographic method has been employed in a number of applications that include combustion, sprays, and gas flows. In the current work, we investigate the implementation of thermographic phosphors in liquid flows, which is of interest in a wide range of applications in heat transfer, fluid mechanics, and thermal systems. Zinc oxide doped with Zinc (ZnO:Zn) was the phosphor employed for experimentation due to its high emission intensity and insolubility. In order to explore this application, the phosphor powder was uniformly dispersed in water using a magnetic stirring rod. The phosphor was excited by the third harmonic 355 nm output of a Nd:YAG laser, and the luminescence was examined using a fiber-coupled spectrometer. Analysis of the spectral data showed a significant redshift as the temperature approached boiling point. Further characterization of effects of temperature and experimental parameters such as ZnO:Zn concentration on the luminescence signal was performed.