Published in:

Physical Review B 70,19 (2004) 193201;

Abstract

Photoluminescence and wavelength-modulated transmission spectra displaying phonon-assisted indirect excitonic transitions in isotopically enriched Si-28, Si-29, Si-30, as well as in natural Si, have yielded the isotopic mass (M) dependence of the indirect excitonic gap (E-gx) and the relevant phonon frequencies. Interpreting these measurements on the basis of a phenomenological theory for (partial derivativeE(gx)/partial derivativeM), we deduce E-gx(M=infinity)=(1213.8+/-1.2) meV, the purely electronic value in the absence of electron-phonon interaction and volume changes associated with anharmonicity.

Keywords

indirect energy-gap;; temperature-dependence;; isotope dependence;; single-crystal;; absorption;; diamond;; si;; ge;; luminescence;; germanium

Date of this Version

January 2004

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.