Abstract

We investigate the localized nonlinear matter waves of the quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity in the harmonic potential. It is shown that all of the Bose-Einstein condensates, similar to the linear harmonic oscillator, can have an arbitrary number of localized nonlinear matter waves with discrete energies, which are mathematically exact orthogonal solutions of the Gross-Pitaevskii equation. Their properties are determined by the principal quantum number n and secondary quantum number l: the parity of the matter wave functions and the corresponding energy levels depend only on n, and the numbers of density packets for each quantum state depend on both n and l, which describe the topological properties of the atom packets. We also give an experimental protocol to observe these phenomena in future experiments.

Published in:

Physical Review A 81,2 (2010)

Date of Version

February 2010

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.