Abstract

Self-consistent normal mode analysis (SCNMA) is applied to heme c type cytochrome f to study temperature-dependent protein motion. Classical normal mode analysis assumes harmonic behavior and the protein mean-square displacement has a linear dependence on temperature. This is only consistent with low-temperature experimental results. To connect the protein vibrational motions between low and physiological temperatures, we have incorporated a fitted set of anharmonic potentials into SCNMA. In addition, quantum harmonic-oscillator theory has been used to calculate the displacement distribution for individual vibrational modes. We find that the modes involving soft bonds exhibit significant non-Gaussian dynamics at physiological temperature, which suggests that it may be the cause of the non-Gaussian behavior of the protein motions probed by elastic incoherent neutron scattering. The combined theory displays a dynamical transition caused by the softening of few "torsional" modes in the low-frequency regime (<50 cm(-1) or <6 meV or >0.6 ps). These modes change from Gaussian to a classical distribution upon heating. Our theory provides an alternative way to understand the microscopic origin of the protein dynamical transition.

Published in:

Physical Review E 82,4 (2010)

Date of Version

October 2010

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.