Date of Award

Spring 2015

Degree Type

Thesis

Degree Name

Master of Science in Agricultural and Biological Engineering

Department

Agricultural and Biological Engineering

First Advisor

Jenna L. Rickus

Committee Chair

Jenna L. Rickus

Committee Member 1

Sherry L. Voytik-Harbin

Committee Member 2

David Umulis

Abstract

Diabetes is a growing concern in the United States and around the world that must be addressed through new treatment options. Current standard treatment options of diabetes are limiting and have tremendous impacts on patient's lives. Emerging therapies, such as the implantation of encapsulated islets, are promising treatment options, but have not yet materialized due to unsolved problems with material properties. Hybrid silica-collagen membranes address some of these unsolved problems and are a promising material for cell encapsulation. However, the mass transfer properties of large molecules, such as insulin, TNF-α, IL1β, and other important proteins in the etiology of diabetes, through these hybrid membranes are poorly characterized. In order to begin characterizing these properties, a device was constructed to accurately and efficiently measure the mass transfer of other similar large molecules, fluorescein isothiocyanate dextrans (FITC-dextran), through collagen-silica hybrid membranes. The device was used to measure diffusion coefficients of 4, 20, 40, and 150 kDa FITC-dextrans through non-silicified and silicified samples of 200 and 1000 Pa porcine skin collagen. Diffusion coefficients were found to be in the 10-7-10-6 cm2s -1range, which is in agreement with previously published data for similar molecules through similar hydrogels. The effects of collagen stiffness, FITC-dextran molecular weight, and silicification treatment on diffusion were investigated. It was found that collagen stiffness and FITC-dextran molecular weight had a negative correlation with diffusion, whereas silicification treatment had no global impact on diffusion. The device created, and the results of this preliminary investigation, can be used to develop collagen-silica hybrid membranes as an alternative material for cell encapsulation in a forward-design manner.

Share

COinS