Date of Award
Fall 2014
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Computer and Information Technology
First Advisor
Nathan Hartman
Committee Member 1
Timothy Ropp
Committee Member 2
Patrick Connolly
Abstract
Current aviation maintenance work instructions do not display information effectively enough to prevent costly errors and safety concerns. Aircraft are complex assemblies of highly interrelated components that confound troubleshooting and can make the maintenance procedure difficult (Drury & Gramopadhye, 2001). The sophisticated nature of aircraft maintenance necessitates a revolutionized training intervention for aviation maintenance technicians (United States General Accounting Office, 2003). Quite simply, the paper based job task cards fall short of offering rapid access to technical data and the system or component visualization necessary for working on complex integrated aircraft systems. Possible solutions to this problem include upgraded standards for paper based task cards and the use of integrated 3D product definition used on various mobile platforms (Ropp, Thomas, Lee, Broyles, Lewin, Andreychek, & Nicol, 2013). Previous studies have shown that incorporation of 3D graphics in work instructions allow the user to more efficiently and accurately interpret maintenance information (Jackson & Batstone, 2008). For aircraft maintenance workers, the use of mobile 3D model-based task cards could make current paper task card standards obsolete with their ability to deliver relevant, synchronized information to and from the hangar. Unlike previous versions of 3D model-based definition task cards and paper task cards, which are currently used in the maintenance industry, 3D model based definition task cards have the potential to be more mobile and accessible. Utilizing augmented reality applications on mobile devices to seamlessly deliver 3D product definition on mobile devices could increase the efficiency, accuracy, and reduce the mental workload for technicians when performing maintenance tasks (Macchiarella, 2004). This proposal will serve as a literary review of the aviation maintenance industry, the spatial ability of maintenance technicians, and benefits of modern digital hardware to educate, point out gaps in research, and observe possible foundations on which to build the future of aviation maintenance job task cards leading to a the methodology of the proposed study.
Recommended Citation
Pourcho, John Bryan, "Augmented Reality Application Utility For Aviation Maintenance Work Instruction" (2014). Open Access Theses. 368.
https://docs.lib.purdue.edu/open_access_theses/368