Date of Award
Spring 2014
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Materials Engineering
First Advisor
Kendra A. Erk
Committee Member 1
John A. Howarter
Committee Member 2
Jason W. Weiss
Abstract
The chemical and physical structure-property relationships of model superabsorbent polymer (SAP) hydrogels were characterized with respect to swelling behavior and mechanical properties in different ionic solutions (Na+ , Ca2+ , and Al3+ ). The model hydrogels were composed of poly(sodium acrylate-acrylamide) (PANa-PAM) copolymer with varying concentrations of PANa (0, 17, 33, 67, and 83 wt.%) and covalent crosslinking densities of 1, 1.5, and 2 wt.%. By synthesizing the hydrogels in-house, systems with independently tunable amounts of covalent crosslinking and anionic functional groups were created, allowing for the relative effects of covalent and ionic crosslinking on the properties of the hydrogels to be directly quantified. It was found that the presence of Ca2+ and Al3+ in the absorbed fluid significantly decreased the swelling capacity and altered the swelling kinetics of the PANa-PAM hydrogels. The presence of Al 3+ in solution resulted in the unexpected formation of a mechanically stiff barrier layer at the hydrogel's surface, which hindered the release of fluid and caused the overall elastic modulus of the hydrogel to increase from O(10 kPa) for hydrogels immersed in Ca 2+ solutions to O(100 kPa) for hydrogels immersed in Al3+ solutions. Tensile tests performed on isolated specimens of the stiff barrier layer yielded elastic moduli in the O(50-100 MPa) range. Further experiments proved that PANa-PAM hydrogels are effective to keep mortar internal relative humidity at high value (~98%) during setting and also PANa-PAM decreased the autogenous shrinkage of mortar to less than 50 microstrain while plain mortar showed 350 microstrain.
Recommended Citation
Zhu, Qian, "Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage" (2014). Open Access Theses. 300.
https://docs.lib.purdue.edu/open_access_theses/300
Included in
Civil Engineering Commons, Materials Science and Engineering Commons, Polymer Chemistry Commons