Date of Award

8-2018

Degree Type

Thesis

Degree Name

Master of Science in Electrical and Computer Engineering (MSECE)

Department

Electrical and Computer Engineering

Committee Chair

Hong Z. Tan

Committee Member 1

Alexander Quinn

Committee Member 2

Charlotte M. Reed

Abstract

This study was based on tactual illusions produced by vibrotactile units. A novel haptic effect based on amplitude modulation was developed, called here the ”snake effect”, which consists on a continuous motion that is smooth, wavy and creepy. Two studies were conducted in order to parameterize this novel haptic effect aiming to: (1) find the fundamental parameters that allow the snake effect to happen in a straight line, (2) assess if the parameters can be implemented for curved trajectories after being combined with funneling, as seen for apparent motion in literature. Study 1 used a 2x6 haptic display in the dorsal part of the forearm, consisted of a pilot and a main study. Participants were asked to rate how the effect was being perceived in an adaptive method. It was found that the effect has a lower and an upper SOA (stimulus onset asynchrony) boundaries and that lower stimulus durations cause a decrease in smoothness and creepiness. It was also found that not every amplitude modulation works to produce the snake effect, and that the best options among the ones investigated are Sine, Sine-Squared and Gaussian modulation types. Study 2 used a 4x4 haptic display in the left forearm and asked participants to draw the motion and direction of movement they perceived in a sheet of paper. In this study, it was found that the direction of movement is easier to tell than the trajectory itself. Also, that the beginning and ending of the motion are harder to feel than the middle of the movement. These findings provide relevant parameters to apply this new haptic effect based on vibrotactile actuators in current and future haptic displays.

Share

COinS