Date of Award

8-2016

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Materials Engineering

First Advisor

Lia A. Stanciu

Committee Chair

Lia A. Stanciu

Committee Member 1

John A. Howarter

Committee Member 2

Elliott B. Slamovich

Committee Member 3

Jeffrey P. Youngblood

Abstract

In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors in O2-lean environments. To address this challenge, the surface of the sensors must be modified with oxygen rich materials. In this regard, we developed a novel electrochemical lactate biosensor design by exploiting the oxygen storage capacity of CeO2 and CeO 2-CuO nanoparticles. By the introduction of CeO2 nanoparticles into the enzyme layer of the sensors, negative interference effect of ascorbate which resulted from the formation of oxygen-lean regions was eliminated successfully. When CeO2-based design was exposed to higher degree of O2 -depleted environments, however, the response current of the biosensors experienced an almost 21 % decrease, showing that the OSC of CeO2 was not high enough to sustain the enzymatic reactions. When CeO2-CuO nanoparticles, which have 5 times higher OSC than pristine CeO2, were used as an oxygen supply in the enzyme layer, the biosensors did not show any drop in the performance when moving from oxygen-rich to oxygen-lean conditions. In the second part of the study, PdCu/SPCE and PdAg/rGO-based electrochemical H2O2 sensors were designed and their performances were evaluated to determine their sensitivity, linear range, detection limit, and storage stability. In addition, practical applicability of the sensors was studied in human serum. The chronoamperometry results showed that the PdCu/SPCE sensors yielded a high sensitivity (396.7 µA mM -1 cm-2), a wide linear range (0.5 -11 mM), and a low limit of detection (0.7 µM) at the applied potential of -0.3 V. For PdAg/rGO sensors, a high sensitivity of 247.6 ± 2.7 µA˙mM -1˙cm-2 was obtained towards H2O 2 in a linear range of 0.05 mM to 28 mM.

Share

COinS