Date of Award

Spring 2015

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Ananth Grama

Committee Chair

Ananth Grama

Committee Member 1

Suresh Jagannathan

Committee Member 2

Patrick Eugster

Committee Member 3

Sonia Fahmy


Large scale data storage and processing systems are strongly motivated by the need to store and analyze massive datasets. The complexity of a large class of these systems is rooted in their distributed nature, extreme scale, need for real-time response, and streaming nature. The use of these systems on multi-tenant, cloud environments with potential resource interference necessitates fine-grained monitoring and control. In this dissertation, we present efficient, dynamic techniques for re-optimizing stream-processing systems and transactional object-storage systems.^ In the context of stream-processing systems, we present VAYU, a per-topology controller. VAYU uses novel methods and protocols for dynamic, network-aware tuple-routing in the dataflow. We show that the feedback-driven controller in VAYU helps achieve high pipeline throughput over long execution periods, as it dynamically detects and diagnoses any pipeline-bottlenecks. We present novel heuristics to optimize overlays for group communication operations in the streaming model.^ In the context of object-storage systems, we present M-Lock, a novel lock-localization service for distributed transaction protocols on scale-out object stores to increase transaction throughput. Lock localization refers to dynamic migration and partitioning of locks across nodes in the scale-out store to reduce cross-partition acquisition of locks. The service leverages the observed object-access patterns to achieve lock-clustering and deliver high performance. We also present TransMR, a framework that uses distributed, transactional object stores to orchestrate and execute asynchronous components in amorphous data-parallel applications on scale-out architectures.