Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Committee Chair

Mark R. Bell

Committee Member 1

Charles A. Bouman

Committee Member 2

David J. Love

Committee Member 3

James V. Krogmeier

Committee Member 4

Michael D. Zoltowski


Due to both economic incentives and policy mandates, researchers increasingly face the challenge of enabling spectrum sharing between radar and wireless communications systems. In the past eight years, researchers have begun to suggest a wide variety of approaches to radar-communications spectrum sharing, ranging from transmitter design to receiver design, from spatial to temporal to other-dimensional multiplexing, and from cooperative to non-cooperative sharing. Within this diverse field of innovation, this dissertation makes two primary contributions. First, a model for wireless communications interference and its effects on adaptive-threshold radar detection is proposed. Based on both theoretical and empirical study, we find evidence for both Gaussian and non-Gaussian communications interference models, depending on the modeling situation. Further, such interference can impact radar receivers via two mechanisms—model mismatch and boost to the underlying noise floor—and both mechanisms deserve attention. Second, an innovative signal processing algorithm is proposed for radar detection in the presence of cyclostationary, linearly-modulated, digital communications (LMDC) interference (such as OFDM or CDMA) and a stationary background component. The proposed detector consists of a novel whitening filter followed by the traditional matched filter. Performance results indicate that the proposed cyclostationary-based detector outperforms a standard equivalent detector based on a stationary interference model, particularly when the number of cyclostationary LMDC transmitters is small and their interference-to-noise ratio (INR) is large relative to the stationary background.