Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Consumer Science

Committee Chair

Gavriil Tsechpenakis

Committee Co-Chair

Voicu Popescu

Committee Member 1

Mihran Tuceryan

Committee Member 2

W. Daniel Tracey, Jr.


The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies.

Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes.

Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics.

Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities.

Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system.