Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Aeronautics and Astronautics

Committee Chair

Michael J. Grant

Committee Member 1

Bedrich Benes

Committee Member 2

William A. Crossley

Committee Member 3

James M. Longuski


State-of-the-art direct and indirect methods face significant challenges when solving large scale constrained trajectory optimization problems. Two main challenges when using indirect methods to solve such problems are difficulties in handling path inequality constraints, and the exponential increase in computation time as the number of states and constraints in problem increases. The latter challenge affects both direct and indirect methods. A methodology called the Integrated Control Regularization Method (ICRM) is developed for incorporating path constraints into optimal control problems when using indirect methods. ICRM removes the need for multiple constrained and unconstrained arcs and converts constrained optimal control problems into two-point boundary value problems. Furthermore, it also addresses the issue of transcendental control law equations by re-formulating the problem so that it can be solved by existing numerical solvers for two-point boundary value problems (TPBVP). The capabilities of ICRM are demonstrated by using it to solve some representative constrained trajectory optimization problems as well as a five vehicle problem with path constraints. Regularizing path constraints using ICRM represents a first step towards obtaining high quality solutions for highly constrained trajectory optimization problems which would generally be considered practically impossible to solve using indirect or direct methods. The Quasilinear Chebyshev Picard Iteration (QCPI) method builds on prior work and uses Chebyshev Polynomial series and the Picard Iteration combined with the Modified Quasi-linearization Algorithm. The method is developed specifically to utilize parallel computational resources for solving large TPBVPs. The capabilities of the numerical method are validated by solving some representative nonlinear optimal control problems. The performance of QCPI is benchmarked against single shooting and parallel shooting methods using a multi-vehicle optimal control problem. The results demonstrate that QCPI is capable of leveraging parallel computing architectures and can greatly benefit from implementation on highly parallel architectures such as GPUs. The capabilities of ICRM and QCPI are explored further using a five-vehicle constrained optimal control problem. The scenario models a co-operative, simultaneous engagement of two targets by five vehicles. The problem involves 3DOF dynamic models, control constraints for each vehicle and a no-fly zone path constraint. Trade studies are conducted by varying different parameters in the problem to demonstrate smooth transition between constrained and unconstrained arcs. Such transitions would be highly impractical to study using existing indirect methods. The study serves as a demonstration of the capabilities of ICRM and QCPI for solving large-scale trajectory optimization methods. An open source, indirect trajectory optimization framework is developed with the goal of being a viable contender to state-of-the-art direct solvers such as GPOPS and DIDO. The framework, named beluga, leverages ICRM and QCPI along with traditional indirect optimal control theory. In its current form, as illustrated by the various examples in this dissertation, it has made significant advances in automating the use of indirect methods for trajectory optimization. Following on the path of popular and widely used scientific software projects such as SciPy [1] and Numpy [2], beluga is released under the permissive MIT license [3]. Being an open source project allows the community to contribute freely to the framework, further expanding its capabilities and allow faster integration of new advances to the state-of-the-art.