Direct current electrical characterization of ds-DNA in nanogap junctions
Date of this Version
January 2005Citation
APPLIED PHYSICS LETTERS 86, 153901 (2005)
This document has been peer-reviewed.
Abstract
Measurements of DNA conductivity, hybridization, and melting using electronic means can have wide applications in molecular electronics and biological sensors. We have fabricated nanogap break-junctions by electromigration through thin gold-on-titanium films. 18-mer thiolated ds-DNA molecules were covalently attached between the electrodes and dc electrical measurements were done. The conductance was measured through the molecule before and after a temperature ramp from 300 to 400 K. A dramatic decrease in conductance was observed, analogous to an electrical fuse, possibly attributed to complete or partial denaturing of the ds-DNA molecules bridging the nanogaps. We also show evidence that the dc resistance of dry DNA strands of the same length decreases with increasing guanine-cytosine content in the sequence with values ranging from 10 M ! to 2 G !. These findings can have important consequences in DNA-based molecular