Keywords

Space-variant mapping, Optic flow, Focus of radial motion

Abstract

We implement a neural model for the estimation of the focus of radial motion (FRM) at different retinal locations and we assess the model by comparing its results with respect to the precision with which human observers can estimate the FRM in naturalistic, moving dead leaves stimuli. The proposed neural model describes the deep hierarchy of the first stages of the dorsal visual pathway [Solari et al., 2014]. Such a model is space-variant, since it takes into account the retino-cortical transformation of the primate visual system through log-polar mapping that produces a cortical representation of the visual signal to the retina. The log-polar transform of the retinal image is the input to the cortical motion estimation stage where optic flow is computed by a three-layer population of cells. A population of spatio-temporal oriented Gabor filters approximates the simple cells of area V1 (first layer), which are combined into complex cells as motion energy units (second layer). The responses of the complex cells are pooled (third layer) to encode the magnitude and direction of velocities as in the extrastriate motion pathway between area MT and MST. The sensitivity to complex motion patterns that has been found in area MST is modeled through a population of adaptive templates, and from the responses of such a population the first order description of optic flow is derived. Information about self-motion (e.g. direction of heading) is estimated by combining such first-order descriptors computed in the cortical domain.

Start Date

13-5-2015 9:05 AM

End Date

13-5-2015 9:30 AM

Session Number

01

Session Title

Motion, Attention, and Eye Movements

Share

COinS
 
May 13th, 9:05 AM May 13th, 9:30 AM

A Space-Variant Model for Motion Interpretation across the Visual Field

We implement a neural model for the estimation of the focus of radial motion (FRM) at different retinal locations and we assess the model by comparing its results with respect to the precision with which human observers can estimate the FRM in naturalistic, moving dead leaves stimuli. The proposed neural model describes the deep hierarchy of the first stages of the dorsal visual pathway [Solari et al., 2014]. Such a model is space-variant, since it takes into account the retino-cortical transformation of the primate visual system through log-polar mapping that produces a cortical representation of the visual signal to the retina. The log-polar transform of the retinal image is the input to the cortical motion estimation stage where optic flow is computed by a three-layer population of cells. A population of spatio-temporal oriented Gabor filters approximates the simple cells of area V1 (first layer), which are combined into complex cells as motion energy units (second layer). The responses of the complex cells are pooled (third layer) to encode the magnitude and direction of velocities as in the extrastriate motion pathway between area MT and MST. The sensitivity to complex motion patterns that has been found in area MST is modeled through a population of adaptive templates, and from the responses of such a population the first order description of optic flow is derived. Information about self-motion (e.g. direction of heading) is estimated by combining such first-order descriptors computed in the cortical domain.