DOI

10.5703/1288284317641

Abstract

With the industry foundation classes (IFC) building information modeling (BIM) standard (ISO 16739) being adopted by AASHTO as the national standard for modeling bridge and road infrastructure projects, there comes a great opportunity to upgrade the INDOT model development standard of roads and related assets to 2D+3D BIM. This upgrade complies with the national standard and creates a solid foundation for preserving accurate asset information for lifecycle data needs. This study reviewed the current modeling standards for drainage and pavement at different state DOTs and investigated the interoperability between state-of-the-art design modeling software and IFC. It was found that while the latest modeling software is capable of supporting interoperability with IFC, there remain gaps that must be addressed to achieve smooth interoperability for supporting life cycle asset data management. Specifically, the prevalent use of IfcBuildingElementProxy and IfcCourse led to a lack of differentiation in the use of IFC entities for the representations of different components, such as inlets, outfalls, conduits, and different concrete pavement layers. This, in turn, caused challenges in the quality assurance (QA) of IFC models and rendered the conventional model view definition (MVD)-based model checking insufficient. To address these gaps and push forward BIM for infrastructure at INDOT, efforts were made in this project to initially create model development instruction manuals that can serve as the foundation for further development and the eventual establish a consistent and comprehensive IFC-based modeling standards and protocols. In addition, automated object classification leveraging invariant signatures of architecture, engineering, and construction (AEC) objects was investigated. Correspondingly, a QA method and tool was developed to check and identify the different components in an IFC model. The developed tool achieved 91% accuracy on drainage and 100% accuracy in concrete pavement in its tested performance. These solutions aim to support the lifecycle management of INDOT transportation infrastructure projects using BIM and IFC.

Report Number

FHWA/IN/JTRP-2023/16

Keywords

building information modeling (BIM), transportation infrastructure, drainage, concrete pavement, industry foundation classes (IFC), model development standards, quality assurance (QA)

SPR Number

4625

Performing Organization

Joint Transportation Research Program

Publisher Place

West Lafayette, Indiana

Date of this Version

2023

Share

COinS