Keywords
Irregular cement particles; Pore structure characterization; Transport performance
Abstract
Based on the CEMHYD3D hydration model, the irregular cement particles were introduced into the model, and three 3D micro structures under different water cement ratio (0.23, 0.35, 0.53) were obtained. Numerous physical models for calculating the characteristic parameters of pore structure are established and the characteristic parameters of pore structure obtained from the physical models. The characteristic parameters of pore structure include the total porosity (referred to as porosity), the porosity of continuous pore, isolated pore and dead-end pore, connectivity, pore size distribution and tortuosity. Finally, the transmission coefficient of each micro structure is calculated by the electric simulation method.
Pore Structure Characterization and Transport Performance Simulation of Cement Hydration Based on Irregular Particles
Based on the CEMHYD3D hydration model, the irregular cement particles were introduced into the model, and three 3D micro structures under different water cement ratio (0.23, 0.35, 0.53) were obtained. Numerous physical models for calculating the characteristic parameters of pore structure are established and the characteristic parameters of pore structure obtained from the physical models. The characteristic parameters of pore structure include the total porosity (referred to as porosity), the porosity of continuous pore, isolated pore and dead-end pore, connectivity, pore size distribution and tortuosity. Finally, the transmission coefficient of each micro structure is calculated by the electric simulation method.