Keywords
cement-based material, nanoCaCO3, shrinkage
Abstract
The hardening process and volume stability of cement pastes with and without nano-CaCO3 (NC) were studied through investigations on the setting time and shrinkage. Results showed that NC shortened the setting time of cement paste: the initial setting time decreased by 3.9 and 11.1% when 1 and 3% NC were added, and the finial setting times were shortened by 6.2 and 15.2%, respectively. The shrinkage of cement paste was compensated by NC, and the effect was more obvious as more NC was added into the cement paste. Although the shrinkage decreased at the lower relative humidity, the degree of hydration of cement can be hindered owing to the lack of sufficient internal curing humidity. Considering the hydration of cement and the volume stability of structure, a high curing humidity was an important factor for improving the durability of NC-modified cement-based materials.
DOI
10.5703/1288284316132
Included in
Effects of Nano-CaCO3 on the Properties of Cement Paste: Hardening Process and Shrinkage at Different Humidity Levels
The hardening process and volume stability of cement pastes with and without nano-CaCO3 (NC) were studied through investigations on the setting time and shrinkage. Results showed that NC shortened the setting time of cement paste: the initial setting time decreased by 3.9 and 11.1% when 1 and 3% NC were added, and the finial setting times were shortened by 6.2 and 15.2%, respectively. The shrinkage of cement paste was compensated by NC, and the effect was more obvious as more NC was added into the cement paste. Although the shrinkage decreased at the lower relative humidity, the degree of hydration of cement can be hindered owing to the lack of sufficient internal curing humidity. Considering the hydration of cement and the volume stability of structure, a high curing humidity was an important factor for improving the durability of NC-modified cement-based materials.