Recommended Citation
Li, J.; Chavez-Galaviz, J.; Azizzadenesheli, K.; Mahmoudian, N. Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller. Sensors 2023, 23, 3572. https://doi.org/10.3390/s23073572
DOI
10.3390/s23073572
Date of this Version
3-29-2023
Keywords
Unmanned surface vehicle; deep reinforcement learning; collision avoidance; model predictive control
Abstract
This work presents a framework that allows Unmanned Surface Vehicles (USVs) to avoid dynamic obstacles through initial training on an Unmanned Ground Vehicle (UGV) and cross-domain retraining on a USV. This is achieved by integrating a Deep Reinforcement Learning (DRL) agent that generates high-level control commands and leveraging a neural network based model predictive controller (NN-MPC) to reach target waypoints and reject disturbances. A Deep Q Network (DQN) utilized in this framework is trained in a ground environment using a Turtlebot robot and retrained in a water environment using the BREAM USV in the Gazebo simulator to avoid dynamic obstacles. The network is then validated in both simulation and real-world tests. The cross-domain learning largely decreases the training time (28%" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative;">28%28%) and increases the obstacle avoidance performance (70 more reward points) compared to pure water domain training. This methodology shows that it is possible to leverage the data-rich and accessible ground environments to train DRL agent in data-poor and difficult-to-access marine environments. This will allow rapid and iterative agent development without further training due to the change in environment or vehicle dynamics.

- Citations
- Citation Indexes: 4
- Usage
- Downloads: 37
- Abstract Views: 8
- Captures
- Readers: 17
- Mentions
- Blog Mentions: 1
Comments
This is the published version of the Li, J.; Chavez-Galaviz, J.; Azizzadenesheli, K.; Mahmoudian, N. Dynamic Obstacle Avoidance for USVs Using Cross-Domain Deep Reinforcement Learning and Neural Network Model Predictive Controller. Sensors 2023, 23, 3572. https://doi.org/10.3390/s23073572