Abstract

During oxidative stress, degenerative diseases such as atherosclerosis, Alzheimer’s, and certain cancers are likely to develop. Recent research on canary seed (Phalaris canariensis) peptides has demonstrated the high in vitro antioxidant potential. Thus, this study aimed to assess the cellular and in vivo antioxidant capacity of a low-molecular-weight (<3 kDa) canary seed peptide fraction (CSPF) using Caco-2 cells and the Caenorhabditis elegans model. The results show that the CSPF had no cytotoxicity effect on Caco-2 cells at any tested concentration (0.3–2.5 mg/mL). Additionally, the cellular antioxidant activity (CAA) of the CSPF was concentration-dependent, and the highest activity achieved was 80% by the CSPF at 2.5 mg/mL. Similarly, incubation with the CSPF significantly mitigated the acute and chronic oxidative damage, extending the lifespan of the nematodes by 88 and 61%, respectively. Furthermore, it was demonstrated that the CSPF reduced the accumulation of reactive oxygen species (ROS) to safe levels after sub-lethal doses of pro-oxidant paraquat. Quantitative real-time PCR revealed that the CSPF increased the expression of oxidative-stress-response-related gene GST-4. Overall, these results show that the CSPFs relied on GST-4 upregulation and scavenging of free radicals to confer oxidative stress protection and suggest that a CSPF can be used as a natural antioxidant in foods for health applications.

Comments

This is the publisher's version of Urbizo-Reyes, U.; Kim, K.-H.; Reddivari, L.; Anderson, J.M.; Liceaga, A.M. Oxidative Stress Protection by Canary Seed (Phalaris canariensis L.) Peptides in Caco-2 Cells and Caenorhabditis elegans. Nutrients 2022, 14, 2415. https:// doi.org/10.3390/nu14122415

Keywords

canary seed peptides; Caenorhabditis elegans; oxidative stress; antioxidant potential

Date of this Version

6-10-2022

DOI

https:// doi.org/10.3390/nu14122415

Share

COinS