Large variability in thresholds to sensory stimuli is observed frequently even in healthy populations. Much of this variability is attributed to genetics and day-to-day fluctuation in sensitivity. However, false positives are also contributing to the variability seen in these tests. In this study, random number generation was used to simulate responses in threshold methods using different “stopping rules”: ascending 2-alternative forced choice (AFC) with 5 correct responses; ascending 3-AFC with 3 or 4 correct responses; staircase 2-AFC with 1 incorrect up and 2 incorrect down, as well as 1 up 4 down and 5 or 7 reversals; staircase 3-AFC with 1 up 2 down and 5 or 7 reversals. Formulas are presented for rates of false positives in the ascending methods, and curves were generated for the staircase methods. Overall, the staircase methods generally had lower false positive rates, but these methods were influenced even more by number of presentations than ascending methods. Generally, the high rates of error in all these methods should encourage researchers to conduct multiple tests per individual and/or select a method that can correct for false positives, such as fitting a logistic curve to a range of responses.


This is the author-accepted manuscript of Running, C. "High false positive rates in common sensory threshold tests." Attention, Perception, and Psychophysics. 2015, Volume 77: Issue 2, pages 692-700. Copyright Springer, the version of record can be found at DOI 10.3758/s13414-014-0798-9.


Sensory thresholds, Type I error, False positive

Date of this Version