Abstract
The problem of low-angle radar tracking utilizing an array of antennas is considered. In the low-angle environment, echoes return from a low flying target via a specular path as well as a direct path. The problem is compounded by the fact that the two signals arrive within a beamwidth of each other and are usually fully correlated, or coherent. In addition, the SNR at each antenna element is typically low and only a small number of data samples, or snapshots, is available for processing due to the rapid movement of the target. Theoretical studies indicates that the Maximum Likelihood (ML) method is the only reliable estimation procedure in this type of scenario. However, the classical ML estimator involves a multi-dimensional search over a multi-modal surface and is consequently computationally burdensome. In order to facilitate real time processing, we here propose the idea of beamspace domain processing in which the element space snapshot vectors are first operated on by a reduced Butler matrix composed of three orthogonal beamforming weight vectors facilitating a simple, closed-form Beamspace Domain ML (BDML) estimator for the direct and specular path angles. The computational simplicity of the method arises from the fact that the respective beams associated with the three columns of the reduced Butler matrix have all but three nulls in common. The performance of the BDML estimator is enhanced by incorporating the estimation of the complex reflection coefficient and the bisector angle, respectively, for the symmetric and nonsymmetric multipath cases. To minimize the probability of track breaking, the use of frequency diversity is incorporated. The concept of coherent signal subspace processing is invoked as a means for retaining the computational simplicity of single frequency operation. With proper selection of the auxiliary frequencies, it is shown that perfect focusing may be achieved without iterating. In order to combat the effects of strong interfering sources, a novel scheme is presented for adaptively forming the three beams which retains the feature of common nulls.
Date of this Version
1-1-1990
Comments
Prepared for the National Science Foundation under contract number ECS-8707681