Numerical simulation of the 1993 midwestern flood

Michael Gerard Bosilovich, Purdue University

Abstract

During the summer of 1993, persistent and heavy precipitation caused a long-lived catastrophic flood in the midwestern United States. In this paper, Midwest hydrology, atmospheric circulation of the 1993 summer, and feedback between the surface and precipitating systems were investigated using the Purdue Regional Model (PRM). Observational analyses of the monthly mean circulation have identified several differences between June and July 1993 that should be considered when studying the interaction of the surface and precipitation systems. The PRM is utilized to simulate the weather during each thirty day period. The PRM is verified against European Centre for Medium Range Weather Forecasts (ECMWF) monthly mean observational analyses. Key features, such as the upper level jet stream and trough, moisture transport and heavy precipitation are reproduced by the PRM. Furthermore, the model is able to simulate the different daily precipitation patterns observed during each month. Some model biases are identified and discussed. The verisimilitude between the model and observed circulations allows for sensitivity experiments to investigate the interaction between the surface and precipitation systems. In general, the results indicated that the June (transient cyclone period) simulations were not as sensitive to the surface anomalies as the July (stationary convective period) simulations. While a large-scale dry soil anomaly slightly decreased the moist convective instability of the planetary boundary layer (PBL), a large scale surface pressure perturbation occurred and weakened the low level jet and moisture transport from the Gulf of Mexico. Both wet and dry soil moisture anomalies, imposed across the southern Great Plains, caused a reduction in the low level jet and Midwestern precipitation. Differential heating at the surface in the control simulations associated with the gradient of soil moisture in the southern Great Plains enhanced the mean southerly wind in the PBL. The influence of 'recirculation of water' is quantified by model simulation and separate sensitivity experiments. The month of July was more sensitive to the local water source than June ($-$20% and $-$12%, respectively). This may be related to the larger amount of convective precipitation that occurred in July. The influence of topography on the upper level trough and low level jet is also discussed.

Degree

Ph.D.

Advisors

Sun, Purdue University.

Subject Area

Atmosphere

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS