Sensitivity theory for reactor burnup analysis based on depletion perturbation theory

Won Sik Yang, Purdue University

Abstract

The large computational effort involved in the design and analysis of advanced reactor configurations motivated the development of Depletion Perturbation Theory (DPT) for general fuel cycle analysis. The work here focused on two important advances in the current methods. First, the adjoint equations were developed for using the efficient linear flux approximation to decouple the neutron/nuclide field equations. And second, DPT was extended to the constrained equilibrium cycle which is important for the consistent comparison and evaluation of alternative reactor designs. Practical strategies were formulated for solving the resulting adjoint equations and a computer code was developed for practical applications. In all cases analyzed, the sensitivity coefficients generated by DPT were in excellent agreement with the results of exact calculations. The work here indicates that for a given core response, the sensitivity coefficients to all input parameters can be computed by DPT with a computational effort similar to a single forward depletion calculation.

Degree

Ph.D.

Advisors

Downar, Purdue University.

Subject Area

Nuclear physics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS