Synthetic steganography: Methods for generating and detecting covert channels in generated media
Abstract
Issues of privacy in communication are becoming increasingly important. For many people and businesses, the use of strong cryptographic protocols is sufficient to protect their communications. However, the overt use of strong cryptography may be prohibited or individual entities may be prohibited from communicating directly. In these cases, a secure alternative to the overt use of strong cryptography is required. One promising alternative is to hide the use of cryptography by transforming ciphertext into innocuous-seeming messages to be transmitted in the clear. In this dissertation, we consider the problem of synthetic steganography: generating and detecting covert channels in generated media. We start by demonstrating how to generate synthetic time series data that not only mimic an authentic source of the data, but also hide data at any of several different locations in the reversible generation process. We then design a steganographic context-sensitive tiling system capable of hiding secret data in a variety of procedurally-generated multimedia objects. Next, we show how to securely hide data in the structure of a Huffman tree without affecting the length of the codes. Next, we present a method for hiding data in Sudoku puzzles, both in the solved board and the clue configuration. Finally, we present a general framework for exploiting steganographic capacity in structured interactions like online multiplayer games, network protocols, auctions, and negotiations. Recognizing that structured interactions represent a vast field of novel media for steganography, we also design and implement an open-source extensible software testbed for analyzing steganographic interactions and use it to measure the steganographic capacity of several classic games. We analyze the steganographic capacity and security of each method that we present and show that existing steganalysis techniques cannot accurately detect the usage of the covert channels. We develop targeted steganalysis techniques which improve detection accuracy and then use the insights gained from those methods to improve the security of the steganographic systems. We find that secure synthetic steganography, and accurate steganalysis thereof, depends on having access to an accurate model of the cover media.
Degree
Ph.D.
Advisors
Rego, Purdue University.
Subject Area
Computer science
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.