"An asymmetric salient permanent magnet synchronous machine for wide co" by Jamal Yousuf Alsawalhi
 

An asymmetric salient permanent magnet synchronous machine for wide constant power speed range applications

Jamal Yousuf Alsawalhi, Purdue University

Abstract

This work introduces a novel permanent-magnet synchronous machine (PMSM) architecture that employs rotational asymmetry to increase the torque density output in constant power variable speed applications. A population based multi-objective design optimization algorithm is used to design and analyze the new machine topology. A number of design studies are presented to show that the proposed machine structure outperforms a conventional PMSM machine. Validation of the analytical machine design model using a three dimensional finite element analyses is performed and the results are presented. Finally, a case study in which a hybrid electric bus traction motor is designed is presented.

Degree

Ph.D.

Advisors

Sudhoff, Purdue University.

Subject Area

Electrical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS