CFD modeling of wind turbine wake in wind farms

Lijian Sun, Purdue University

Abstract

Wind energy is one of the most common and preferred renewable energy sources. Accurate predictions of atmospheric boundary layer flow, wind turbine induced wakes and their interaction are essential to maximize wind power output and efficiently harness wind energy. In this dissertation, a computational fluid dynamics (CFD) flow model is developed utilizing a three dimensional weighted essentially non-oscillatory (WENO) high order Finite Volume Model system including Large Eddy Simulation (LES) and the Actuator Line Method (ALM). The developed model system is thus able to accurately capture and simulate wind turbine wakes and their interaction with the atmospheric boundary layer, thereby providing insight into the phenomenon of turbine wake interaction and its effect on the external aerodynamic loads on wind turbines. This enables the wind energy production to be maximized and also minimizes turbine fatigue loading in the evaluation of wind farm layouts. By using LES model to simulate the Atmospheric Boundary Layer flow rather than the Reynolds-Averaged Navier-Stokes (RANS) model, the error introduced by turbulence modeling is reduced. The Actuator Line Model, ALM, is used to model the rotor by replacing the rotor with radially distributed body forces. It is more accurate than the actuator disc method as it captures the influence of the blade tip vortices. It can focus on a larger portion of the wake without resolving the actual wind turbine blades' geometry, thereby reducing computational cost. It is suitable and a promising method for wind turbine wake simulation. Classic non-trivial turbulent benchmark cases are used to validate the high order LES algorithms. Simulation results are compared with available results whenever possible, with good agreement observed. Results for the atmospheric boundary layer under neutral conditions are presented. By using LES coupled with the Actuator Line model, simulation results are obtained for detailed wake flow features around single wind turbine as well as wind turbine arrays.

Degree

Ph.D.

Advisors

Fleeter, Purdue University.

Subject Area

Mechanical engineering|Energy

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS