Nanoscale heat transport via electrons and phonons by molecular dynamics simulations

Keng-Hua Lin, Purdue University

Abstract

Nanoscale heat transport has become a crucial research topic due to the growing importance of nanotechnology for manufacturing, energy conversion, medicine and electronics. Thermal transport properties at the nanoscale are distinct from the macroscopic ones since the sizes of nanoscale features, such as free surfaces and interfaces, are comparable to the wavelengths and mean free paths of the heat carriers (electrons and phonons), and lead to changes in thermal transport properties. Therefore, understanding how the nanoscale features and energy exchange between the heat carriers affect thermal transport characteristics are the goals of this research. Molecular dynamics (MD) is applied in this research to understand the details of nanoscale heat transport. The advantage of MD is that the size effect, anharmonicity, atomistic structure, and non-equilibrium behavior of the system can all be captured since the dynamics of atoms are described explicitly in MD. However, MD neglects the thermal role of electrons and therefore it is unable to describe heat transport in metal or metal-semiconductor systems accurately. To address this limitation of MD, we develop a method to simulate electronic heat transport by implementing electronic degrees of freedom to MD. In this research, nanoscale heat transport in semiconductor, metal, and metal-semiconductor systems is studied. Size effects on phonon thermal transport in SiGe superlattice thin films and nanowires are studied by MD. We find that, opposite to the macroscopic trend, superlattice thin films can achieve lower thermal conductivity than nanowires at small scales due to the change of phonon nature caused by adjusting the superlattice periodic length and specimen length. Effects of size and electron-phonon coupling rate on thermal conductivity and thermal interface resistivity in Al and model metal-semiconductor systems are studied by MD with electronic degrees of freedom. The results show that increasing the specimen length or the electron-phonon coupling rate increases the electronic contribution in thermal transport and therefore increases the thermal conductivity; moreover, the thermal interface resistivity in metal-semiconductor systems is observed to depend on the heat flux direction due to the direction-dependent energy transfer pathways between electrons and phonons at the interface. MD with electronic degrees of freedom is also applied to simulate heat transport across the metal-semiconductor interface under the non-equilibrium conditions, mimicking the ultrafast laser heating in transient thermoreflectance measurements. The effect of local and non-local electron-phonon coupling across the interface are examined, since the experimental evidence suggests that non-local electron-phonon coupling occurs under the non-equilibrium conditions. Our results show that non-local electron-phonon coupling not only facilitates energy transfer across the interface but also enhances ballistic transport of the high frequency phonon modes in a semiconductor. In summary, our study provides an insight into the details of nanoscale heat transport in various systems by MD and MD with electronic degrees of freedom

Degree

Ph.D.

Advisors

Strachan, Purdue University.

Subject Area

Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS