pH-activatable nanoparticles for tumor-specific drug delivery

Karen C Liu, Purdue University

Abstract

To address the need for a tumor-specific drug delivery system that can achieve both prolonged circulation and cellular retention at the tumor site, nanocomplexes of Zwitterionic Chitosan (ZWC) and Polyamidoamine (PAMAM) generation 5 were designed. Polyamidoamine (PAMAM) dendrimers have been widely explored as carriers of therapeutics and imaging agents, however, amine-terminated PAMAM dendrimers are rarely utilized in systemic applications due to its cytotoxicity and risk of opsonization, caused by its cationic charge. Such undesirable effects may be mitigated by shielding the PAMAM dendrimer surface with polymers that reduce the charges. However, this shielding may also interfere with PAMAM dendrimers' ability to interact with target cells, thus reducing cellular uptake and overall efficacy of the delivery system. ZWC, a new chitosan derivative, has a unique pH-sensitive charge profile and can shield the cationic surface of PAMAM dendrimers and block adsorption of serum proteins to allow for prolonged circulation. The hypothesis of this approach is that ZWC is anionic and able to coat PAMAM in neutral pH but becomes positive in the acidic tumor microenvironment, revealing the polycationic drug carrier. We expect that ZWC will provide (i) stealth coating for PAMAM drug carrier during circulation (pH 7.4) and (ii) be removed from the PAMAM drug carrier at acidic pH (pH ~6.3), allowing for cellular interaction. The cationic charge of PAMAM has been demonstrated to facilitate uptake and drug delivery to tumor cells via interactions with the negatively charged cell surface. Stable electrostatic complexes of ZWC and PAMAM dendrimers were formed at pH 7.4, as demonstrated by fluorescence spectroscopy and transmission electron microscopy. The presence of ZWC coating protected red blood cells and fibroblast cells from hemolytic and cytotoxic activities of PAMAM dendrimers, respectively. Confocal microscopy showed that the protective effect of ZWC disappeared at low pH as the complex dissociated due to the charge conversion of ZWC, allowing PAMAM dendrimers to enter cells. These results demonstrate that ZWC is able to provide a surface coverage of PAMAM dendrimers in a pH-dependent manner and, thus, enhance the utility of PAMAM dendrimers as a drug carrier to solid tumors with acidifying microenvironment. Paclitaxel, curcumin, and camptothecin were evaluated as model drugs for use in ZWC(PAMAM) drug carrier based on bioactivity against SKOV-3 ovarian cancer cells and drug loading and release. Stability of nanocarriers in circulation is a requirement for successful tumor-specific drug release. Strategies to improve the stability of ZWC(PAMAM) NPs were also explored and evaluated. ^

Degree

Ph.D.

Advisors

Yoon Yeo, Purdue University.

Subject Area

Engineering, Biomedical|Health Sciences, Pharmacy|Nanotechnology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS