Triplet-Triplet Energy Transfer and Protection Mechanisms Against Singlet Oxygen in Photosynthesis

Shigeharu Kihara, Purdue University

Abstract

In photosynthesis, (bacterio)chlorophylls ((B)Chl) play a crucial role in light harvesting and electron transport. (B)Chls, however, are known to be potentially dangerous due to the formation of the triplet excited state which forms the singlet oxygen (1O2*) when exposed to the sunlight. Singlet oxygen is highly reactive and all modern organisms incorporate special protective mechanisms to minimize the oxidative damage. One of the conventional photoprotective mechanisms used by photosynthetic organisms is by the nearby carotenoids quenching the excess energy and releasing it by heat. In this dissertation, two major aspects of this process are studied. First, based on experimental data and model calculations, the oxygen content in a functioning oxygenic photosynthetic oxygen cell was determined. These organisms perform water splitting and as a result significant amount of oxygen can be formed within the organism itself. It was found, that contrary to some published estimates, the excess oxygen concentration generated within an individual cell is extremely low – 0.025 ... 0.25 µM, i.e. about 103-104 times lower than the oxygen concentration in air saturated water. Such low concentrations imply that the first oxygenic photosynthetic cells that evolved in oxygen-free atmosphere of the Earth ~2.8 billion years ago might have invented the water splitting machinery (photosystem II) without the need for special oxygen-protective mechanisms, and the latter mechanisms could have evolved in the next 500 million years during slow rise of oxygen in the atmosphere. This result also suggests that proteins within photosynthetic membranes are not exposed to significant O2 levels and thus can be studied in vitro under the usual O2 levels. Second, the fate of triplet excited states in the Fenna Matthew Olson (FMO) pigment-protein complex is studied by means of time-resolved nanosecond spectroscopy and exciton model simulations. For the first time, the properties of several individual BChl pigments within that photosynthetic antenna complex are accessed via their triplet state dynamics. It is found that the currently used exciton model of FMO needs to be revised. It is also shown that triplet excited states can be readily transferred between the molecules. It is proposed that the triplet energy transfer between the BChl molecules can also serve as a protection mechanism. Finally, it is inferred that at least one of the BChl molecules within the FMO has a triplet state energy that is lower than that of singlet oxygen. This effectively prevents the formation of singlet oxygen and protects the complex from oxidative damage. The energy of BChl is apparently lowered by the specific protein environment, as in solution its energy is measured to be somewhat higher than the energy of singlet oxygen. Finally, the results of the triplet energy transfer within the cytochrome b6f complex are presented. This part of the work is not conclusive, and some of the problems encountered in experiments are described, as well as a new method of sample degassing developed for this type of study is presented.

Degree

Ph.D.

Advisors

Savikhin, Purdue University.

Subject Area

Molecular biology|Biochemistry|Optics|Biophysics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS