Measurement of a weak transition moment using Coherent Control

Dionysios Antypas, Purdue University

Abstract

We have developed a two-pathway Coherent Control technique for measurements of weak optical transition moments. We demonstrate this technique through a measurement of the transition moment of the highly-forbidden magnetic dipole transition between the 6s2S 1/21/2 and 7s2S 1/21/2 states in atomic Cesium. The experimental principle is based on a two-pathway excitation, using two phase-coherent laser fields, a fundamental field at 1079 nm and its second harmonic at 539.5 nm. The IR field induces a strong two-photon transition, while the 539.5 nm field drives a pair of weak one-photon transitions: a Stark-induced transition of controllable strength as well as the magnetic dipole transition. Observations of the interference between these transitions for different Stark-induced transition amplitudes, allow a measurement of the ratio of the magnetic dipole to the Stark-induced moment. The interference between the transitions is controlled by modulation of the phase-delay between the two optical fields. Our determination of the magnetic dipole moment is at the 0.4% level and in good agreement with previous measurements, and serves as a benchmark for our technique and apparatus. We anticipate that with further improvement of the apparatus detection sensitivity, the demonstrated scheme can be used for measurements of the very weak Parity Violation transition moment on the Cesium 6s2 S1/2→7s2 S1/2 transition.

Degree

Ph.D.

Advisors

Elliott, Purdue University.

Subject Area

Atoms & subatomic particles

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS