Millimeter wave beamforming for wireless backhaul and access in small cell networks and practical approaches in software-defined radio

Sooyoung Hur, Purdue University

Abstract

Mobile data traffic will continue its tremendous growth in some markets, and has already resulted in an apparent radio spectrum scarcity. There is a strong need for more efficient methods to use spectrum resources, leading to extensive research on increasing spectrum reusability on flexible radio platforms. This study solves this problem in two sub topics, millimeter wave communication on wireless backhaul for spectrum reusability, and flexible prototyping radio platform using software-defined radio (SDR). Wireless backhaul has received significant attention as a key technology affecting the development of future wireless cellular networks because it helps to easily deploy many small size cells, an essential part of a high capacity system. Millimeter wave is considered a possible candidate for cost-effective wireless backhaul. In the outdoor deployment using a millimeter wave, beamforming methods are key techniques to establish wireless links in the 60 GHz to 80 GHz to overcome pathloss constraints (i.e., rainfall effect and oxygen absorption). The millimeter wave communication system cannot directly access the channel knowledge. To overcome this, a beamforming method based on codebook search is considered. The millimeter wave communication cannot access channel knowledge, therefore alternatively a beamforming method based on a codebook search is considered. In the first part, we propose an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks. A wind sway analysis is presented to establish a notion of beam coherence time. This highlights a previously unexplored tradeoff between array size and wind-induced movement. Generally, it is not possible to use larger arrays without risking a performance loss from wind-induced beam misalignment. The performance of the proposed alignment technique is analyzed and compared with other search and alignment methods. Results show significant performance improvement with reduced search time. In the second part of this study, SDR is discussed as an approach toward flexible wireless communication systems. Most layers of SDR are implemented by software. Therefore, only a software change is needed to transform the type of radio system. The translation of the signal processing into software performed by a regular computer opens up a huge number of possibilities at a reasonable price and effort. SDR systems are widely used to build prototypes, saving time and money. In this project, a robust wireless communication system in high interference environment was developed. For the physical layer (PHY) of the system, we implemented a channel sub-bandding method that utilizes frequency division multiplexing to avoid interference. Then, to overcome a further interfered channel, Direct Spread Spectrum System (DSSS) was considered and implemented. These prototyped testbeds were evaluated for system performance in the interference environment.

Degree

Ph.D.

Advisors

Love, Purdue University.

Subject Area

Electrical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS