Effects of local film properties on the nucleation and growth of tin whiskers and hillocks
Abstract
Whiskers and hillocks grow spontaneously on Pb-free Sn electrodeposited films as a response to thin film stresses. Stress relaxation occurs by atom deposition to specific grain boundaries in the plane of the film, with hillocks being formed when grain boundary migration accompanies growth out of the plane of the film. The implication for whisker formation in electronics is serious: whiskers can grow to be millimeters long, sometimes causing short circuiting between adjacent components and, thereby, posing serious electrical reliability risks. In order to develop more effective whisker mitigation strategies, a predictive physics-based model has been needed. A growth model is developed, based on grain boundary faceting, localized Coble creep, as well as grain boundary sliding for whiskers, and grain boundary sliding with shear induced grain boundary migration for hillocks. In this model of whisker formation, two mechanisms are important: accretion of atoms by Coble creep on grain boundary planes normal to the growth direction inducing a grain boundary shear and grain boundary sliding in the direction of whisker growth. The model accurately captures the importance of the geometry of "surface grains"—shallow grains on film surfaces whose depths are significantly less than their in-plane grain sizes. A critical factor in the analysis is the ratio of the grain boundary sliding coefficient to the in-plane film compressive stress. If the accretion-induced shear stresses are not coupled to grain boundary motion and sliding occurs, a whisker forms. If the shear stress is coupled to grain boundary migration, a hillock forms. Based on this model, long whiskers grow from shallow surface grains with easy grain boundary sliding in the direction of growth. Other observed growth morphologies will be discussed in light of our model. Additional insights into the preferred sites for whisker and hillock growth were developed based on elastic anisotropy, local film microstructure, grain misorientation, and elastic strain energy density (ESED) as the driving force for growth. Local grain orientations and strains measured by synchrotron micro-diffraction in regions containing whiskers or hillocks were compared with elastic finite element analysis simulations, including Sn elastic anisotropy. Whisker and hillock grains were observed to have higher crystallographic misorientations with neighboring grains than generally observed in the microstructure. While elastic simulations predicted higher local out-of-plane elastic strains and ESEDs for whisker and hillock grains, synchrotron measurements of out-of-plane strains of whisker and hillock grains after growth showed relaxation, with correspondingly low ESEDs calculated from measured strains. This suggests that, before whisker or hillock formation, highly misoriented grains with high out-of-plane elastic strains and ESEDs relative to their neighbors determined, at least in part, which grains became whiskers or hillocks. Based on the models and experiments in this thesis, a clearer picture emerges of the necessary and sufficient conditions for tin whisker and hillock formation in thin films.
Degree
Ph.D.
Advisors
Blendell, Purdue University.
Subject Area
Materials science
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.