Development of collagen peptide-based biomaterials for tissue engineering applications

Victor Hernandez Gordillo, Purdue University

Abstract

The transition from in vitro to in vivo use of stem cells in regenerative medicine requires biomaterial scaffolds that can maintain stem cell viability and at the same time allow cell differentiation. We have previously reported the design of a collagen mimetic peptide (CMP) that assembles into a mesh-like three-dimensional (3D) structure upon the addition of metal ions and its potential for the culture of human cells. The addition of a chelating solution, such as EDTA, results in disassembly of the 3D structure, demonstrating the flexibility in the assembly/disassembly process. In the second chapter of this dissertation, we report the design of CMPs that can be functionalized with His-tagged cargoes within the 3D scaffold, via metal coordination. We show that the addition of GFP-His8 and human epidermal growth factor (hEGF-His6) has minimal effect in the assembly process. Additionally, we show that the bound hEGF-His6 can be released gradually in vitro for 5 days and induces cell proliferation in an EGF-dependent cell line. Furthermore, we functionalized the CMPs with the cell adhesion sequence (RGDS) to promote cell differentiation of two human non-tumorigenic cells lines, MCF10A and 3522-S1. In the third chapter, we evaluated the possibility of using the collagen mimetic-peptide-based (CMP) scaffolds for cell encapsulation and differentiation of human mesenchymal stem cells (hMSC). We show that hMSC encapsulated within the CMP scaffold are viable for up to 24 days post encapsulation. Moreover, hMSC at days 1, 4 and 8 days after encapsulation can be recovered from the scaffold and retain their stemness properties when analyzed for in vitro differentiation. We also demonstrate by real time PCR (RT-PCR) that genes important for osteogenic and chondrogenic differentiation are over-expressed in the absence of stimulating factors when the cells are encapsulated in the 3D scaffold at 8 and 24 days post encapsulation. Lastly, the incorporation of the cell adhesion sequence (RGDS) was shown to influence the scaffold-cell interaction. hMSCs within these RGDS-modified scaffold adopted spindle shape morphology and a complex cell organization at the outermost layer of the scaffold. In contrast, in the scaffold lacking the RGDS sequence hSMCs formed cell aggregates.

Degree

Ph.D.

Advisors

Chmielewski, Purdue University.

Subject Area

Cellular biology|Biomedical engineering|Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS