Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

Daniel L Alge, Purdue University

Abstract

The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility and were biocompatible in vitro. Furthermore, 3D PPF reinforced DCPD scaffolds had strengths comparable to trabecular bone. Based on these results, 3D PPF reinforced DCPD scaffolds were evaluated in vivo using a rabbit calvarial defect model. Although bone formation was not enhanced by the addition of mesenchymal stem cells, significant bone ingrowth from the surrounding tissue was observed. The results of this work provide a foundation for future research on 3D polymer reinforced calcium phosphate cement scaffolds.

Degree

Ph.D.

Advisors

Nauman, Purdue University.

Subject Area

Biomedical engineering|Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS