"Holomorphic Banach bundles over compact manifolds" by Jaehong Kim
 

Holomorphic Banach bundles over compact manifolds

Jaehong Kim, Purdue University

Abstract

This thesis is motivated by Grothendieck’s splitting theorem. In the 1960s, Gohberg generalized this to a class of Banach bundles. We consider a compact complex manifold X and a holomorphic Banach bundle E → X that is a compact perturbation of a trivial bundle in a sense recently introduced by Lempert. We prove that E splits into the sum of a finite rank bundle and a trivial bundle, provided H1( X,[special characters omitted]) = 0.

Degree

Ph.D.

Advisors

Lempert, Purdue University.

Subject Area

Mathematics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS