Steam -air mixture condensation in a subcooled water pool

Timothy Linhurst Norman, Purdue University

Abstract

In any conceptual reactor design under postulated accidental conditions, one parameter that is considered as being highly ranked in determining the thermal-hydraulic conditions of the reactor safety components is the system pressure. To obtain a satisfactory prediction of steam partial pressure, within reasonable uncertainty in the gas space of a confined SP (suppression pool) bounded to the steam source of the break flow, one must establish a means by which local phenomena associated with steam direct contact condensation in the subcooled water pool can be fully addressed to predict the global component thermal response. For this purpose a scaled down, reduced pressure, suppression pool was designed and built to study condensation and mixing phenomena. The scaled test facility represented an idealized trapezoidal cross section, 1/10 sector of the SP with scaled height ratio of 1/4.5 and volume ratio of 1/400. The design and test conditions were based on a hierarchical scaling principle that preserves the transfer of mass, momentum, energy and condensation phenomena. Distributed thermocouples within the pool provided a means to quantify the pool thermal response. The test loop was not only instrumented with thermocouples for monitoring pool stratification but also with high speed photography for flow visualization from which to build a comprehensive database to identify the regions of the pool that were thermally stratified or mixed. Data were obtained for different pool initial subcooling and steam/air mixture flow rates. Dimensionless boundary maps were plotted from several experimental runs of pure steam injection to determine conditions when the pool transits from being homogeneously mixed to being thermally stratified. Steam-air mixture injection cases for single horizontal venting indicated that above a pool temperature of 40°C with airmass flow rates below 0.1 g/s the pool can attain thermal stratification. Models of a single phase liquid-into-liquid buoyant jet and a two-phase vapor-into-liquid turbulent jet plume injected in horizontal orientation were developed from the Reynolds averaged Navier-Stokes equations in the cylindrical system for steady axisymmetric flow and incorporated the integral plume theory. The two-phase simplified model developed to predict the pool surface temperature to within less than 0.5°C in the majority of cases.

Degree

Ph.D.

Advisors

Revankar, Purdue University.

Subject Area

Nuclear physics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS