The impingement of sonic and sub-sonic jets onto a flat plate at inclined angles

Jimmy Wayne Crafton, Purdue University

Abstract

The flow field associated with a jet impinging onto a surface at an inclined angle is investigated using the image-based technologies of Temperature- and Pressure-Sensitive Paints and Particle Image Velocimetry. These diagnostics are used to produce two-dimensional measurements of temperature, Nusselt number, and pressure on the impingement surface and two-components of velocity above the surface. In the process of measuring Nusselt number a novel technique for determining the adiabatic wall temperature has been developed. This image-based technique was used to measure the adiabatic wall temperature on the impingement surface beneath both compressible and incompressible jets. The results of this investigation indicate that as a free jet impinges on a flat surface at an inclined angle the jet is turned by and spread laterally onto the impingement surface. The impingement angle of the jet is the dominant parameter in determining the rate of turning/spreading for the jet. Qualitatively, the structure of the half maximum pressure contour on the impingement surface is similar to an ellipse created by projecting the nozzle through the impingement surface. The center of the ellipse is located near the location of maximum pressure and the eccentricity is a function of the impingement angle. The width of the minor axis is just over one jet diameter. The point of maximum pressure, Nusselt number, and the stagnation point are each located upstream of the geometric impingement point, and this location is a strong function of impingement angle. The relative locations of the stagnation point, the point of maximum Nusselt number, the point of maximum pressure, and the geometric impingement point are identified and a simple correlation for the location of each of these points relative to the geometric impingement point is presented. Finally, the maximum value of both pressure and Nusselt number are found to be a function of impingement distance and impingement angle.

Degree

Ph.D.

Advisors

Sullivan, Purdue University.

Subject Area

Aerospace materials

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS