Miniature acoustic guidance system for endotracheal tubes

Eduardo J Juan, Purdue University

Abstract

Ensuring that the distal end of an endotracheal tube is properly located within the trachea, and that the tube is not obstructed by mucous deposition, is a major clinical concern in patients that require mechanical ventilation. A novel acoustic system was developed to allow for the continuous monitoring of endotracheal tube position and patency. A miniature sound source and two sensing microphones are placed in-line between the ventilator hose and the proximal end of the endotracheal tube. Reflections of an acoustic pulse from the endotracheal tube lumen and the airways are digitally analyzed to estimate the location and degree of obstruction, as well as the position of the distal end of the tube in the airway. The system was evaluated through computer simulations, in vitro studies, and in a rabbit model. The system noninvasively estimated tube position in vivo to within roughly 4.5 mm, and differentiated between proper tracheal, and erroneous bronchial or esophageal intubation in all cases. In addition, the system estimated the area and location of lumen obstructions in vitro to within 14% and 3.5 mm, respectively. These findings indicate that this miniature technology could improve the quality of care provided to the ventilated adult and infant.

Degree

Ph.D.

Advisors

Wodicka, Purdue University.

Subject Area

Biomedical engineering|Acoustics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS