Aeroelastic tailoring and structural optimization of joined -wing configurations

Dong-Hwan Lee, Purdue University

Abstract

Methodology for integrated aero-structural design was developed using formal optimization. ASTROS (Automated STRuctural Optimization System) was used as an analyzer and an optimizer for performing joined-wing weight optimization with stress, displacement, cantilever or body-freedom flutter constraints. As a pre/post processor, MATLAB was used for generating input file of ASTROS and for displaying the results of the ASTROS. The effects of the aeroelastic constraints on the isotropic and composite joined-wing weight were examined using this developed methodology. The aeroelastic features of a joined-wing aircraft were examined using both the Rayleigh-Ritz method and a finite element based aeroelastic stability and weight optimization procedure. Aircraft rigid-body modes are included to analyze of body-freedom flutter of the joined-wing aircraft. Several parametric studies were performed to determine the most important parameters that affect the aeroelastic behavior of a joined-wing aircraft. The special feature of a joined-wing aircraft is body-freedom flutter involving frequency interaction of the first elastic mode and the aircraft short period mode. In most parametric study cases, the body-freedom flutter speed was less than the cantilever flutter speed that is independent of fuselage inertia. As fuselage pitching moment of inertia was increased, the body-freedom flutter speed increased. When the pitching moment of inertia reaches a critical value, transition from body-freedom flutter to cantilever flutter occurred. The effects of composite laminate orientation on the front and rear wings of a joined-wing configuration were studied. An aircraft pitch divergence mode, which occurred because of forward movement of center of pressure due to wing deformation, was found. Body-freedom flutter and cantilever-like flutter were also found depending on combination of front and rear wing ply orientations. Optimized wing weight behaviors of the planar and non-planar configurations with isotropic and composite materials were investigated. Wing weight optimization of the composite joined-wing result in less weight compared to the metallic wing. Fuselage flexibility affects joined-wing flutter characteristics. Elastic mode shapes of the wing were affected by fuselage deformation and change the flutter speeds compared to the rigid fuselage. Body-freedom flutter speeds decrease as fuselage flexibility increases. Optimum wing weights increase as fuselage flexibility increases. Flutter analysis of a box wing configuration investigated the effects of center of gravity location and pitch moment of inertia on flutter speed.

Degree

Ph.D.

Advisors

Weisshaar, Purdue University.

Subject Area

Aerospace materials

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS