An Improved Airflow and Watering Balance for a Biowall

Dhanurja de Silva, Purdue University

Abstract

Clean indoor air is a necessity, in the past opening a window or supplying outdoor air would suffice for removing indoor contaminated air. As humans live in more dense neighborhoods or urban areas, the need for energy efficient clean indoor air is important. As outdoor air pollution increases, a Biowall is a device to improve aesthetics and clean indoor air by pulling air through the root zone of plants in a loosely packed growth media. The Biowall is a sustainable supplement to a single use air filter. For this research a small Biowall was designed, fabricated, tested, and installed in the Children’s wing of a public library. The airflow simulation and watering for the Biowall was explored using Autodesk CFD to simulate the airflow through growth media and identify a hole pattern to distribute airflow evenly through the plant trays. Various watering line designs were also tested until the rectangular design proved to be more balanced at distributing the water evenly to the growth media. Finally, the air cleaning ability of the Biowall was tested using a Clean Air Delivery Rate (CADR) test to quantify the cleaning rate. The Biowall provided 12 cfm of clean air, or about 2 cfm/sq ft of plant tray area.

Degree

M.S.

Advisors

Sparkling, Purdue University.

Subject Area

Design|Sustainability|Atmospheric Chemistry|Atmospheric sciences|Energy

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS