Proactive Vulnerability Identification and Defense Construction – The Case for Can
Abstract
The progressive integration of microcontrollers into various domains has transformed traditional mechanical systems into modern cyber-physical systems. However, the beginning of this transformation predated the era of hyper-interconnectedness that characterizes our contemporary world. As such, the principles and visions guiding the design choices of this transformation had not accounted for many of today’s security challenges. Many designers had envisioned their systems to operate in an air-gapped-like fashion where few security threats loom. However, with the hyper-connectivity of today’s world, many CPS find themselves in uncharted territory for which they are unprepared.An example of this evolution is the Controller Area Network (CAN). CAN emerged during the transformation of many mechanical systems into cyber-physical systems as a pivotal communication standard, reducing vehicle wiring and enabling efficient data exchange. CAN’s features, including noise resistance, decentralization, error handling, and fault confinement mechanisms, made it a widely adopted communication medium not only in transportation but also in diverse applications such as factories, elevators, medical equipment, avionic systems, and naval applications.The increasing connectivity of modern vehicles through CD players, USB sticks, Bluetooth, and WiFi access has exposed CAN systems to unprecedented security challenges and highlighted the need to bolster their security posture. This dissertation addresses the urgent need to enhance the security of modern cyber-physical systems in the face of emerging threats by proposing a proactive vulnerability identification and defense construction approach and applying it to CAN as a lucid case study. By adopting this proactive approach, vulnerabilities can be systematically identified, and robust defense mechanisms can be constructed to safeguard the resilience of CAN systems.We focus on developing vulnerability scanning techniques and innovative defense system designs tailored for CAN systems. By systematically identifying vulnerabilities before they are discovered and exploited by external actors, we minimize the risks associated with cyber-attacks, ensuring the longevity and reliability of CAN systems. Furthermore, the defense mechanisms proposed in this research overcome the limitations of existing solutions, providing holistic protection against CAN threats while considering its performance requirements and operational conditions.It is important to emphasize that while this dissertation focuses on CAN, the techniques and rationale used here could be replicated to secure other cyber-physical systems. Specifically, due to CAN’s presence in many cyber-physical systems, it shares many performance and security challenges with those systems, which makes most of the techniques and approaches used here easily transferrable to them. By accentuating the importance of proactive security, this research endeavors to establish a foundational approach to cyber-physical systems security and resiliency. It recognizes the evolving nature of cyber-physical systems and the specific security challenges facing each system in today’s hyper-connected world and hence focuses on a single case study.
Degree
Ph.D.
Advisors
Celik, Purdue University.
Subject Area
Design|Communication|Transportation
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.
- Usage
- Abstract Views: 20