Slide-To-Roll Ratio in Automotive Valve Train Cam and Oscillating Roller Follower

Daniel Jonathan Korn, Purdue University

Abstract

The objectives of this investigation were to experimentally and analytically evaluate the performance of a valve train cam and oscillating roller follower mechanism. Of particular interest was the effect of operating conditions on the slide-to-roll ratio (SRR) of the roller follower.In order to experimentally measure the SRR at the cam-roller contact, a valve train test rig (VTTR) was utilized. The VTTR contained a section of a heavy-duty diesel engine valve train that was instrumented with encoders and Hall effect sensors to measure the camshaft and roller follower angular velocities as a function of operating parameters.To corroborate the experimental with analytical results, a numerical model for the cam and oscillating roller follower was developed. In this modeling approach, the roller angular velocity was determined via a torque balance between the frictional torque of the pin-roller follower and cam-roller follower interfaces. The pin-roller friction was obtained by developing a time-dependent hydrodynamic journal bearing model with variable speed and load. Friction maps were developed for the cam-roller follower interface using a ball-on-disk EHD2 rig to capture the friction behavior across a range of entraining velocities, contact pressures, and SRRs. Additional areas of investigation included thermal effects and wear in the pin-roller contact.Overall, good agreement was obtained between the experimental and analytical roller follower angular velocity, with the normalized RMS errors less than 7%, across all operating conditions investigated. The analytical investigation determined that thermal effects in the pin-roller contact are insignificant for the typical operating conditions. However, it was shown that the pin-roller friction torque is critical in causing roller follower slip, as the SRR greatly increases once the pin-roller friction torque is greater than the cam-roller friction torque. Finally, pin-roller local wear was demonstrated to have detrimental effects on the SRR of the roller follower once a critical wear depth was reached.

Degree

M.Sc.

Advisors

Panchal, Purdue University.

Subject Area

Mathematics|Mechanical engineering|Transportation

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS